C13

Cross-bridge lever arm disposition of a low ionic strength-induced actin-bound state in *Rana temporaria*

P.J. Griffiths, R. Pelc*, S. Funari† and C.C. Ashley

University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK, *Department of Microbiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic and † Hasylab, Gebäude 25f, DESY, Notkestraße 85, Hamburg D-22603, Germany

Reduction of ionic strength promotes formation of 'weakly binding' cross-bridges in skeletal muscle, an actin-bound S1 state differing from rigor and Ca²⁺-activated states in that S1 is unloaded, and thought to be a pre-power stroke intermediate in the cross-bridge cycle.

We induced this state in fibre bundles from sartorius muscles of *Rana temporaria* (humanely killed by decapitation, fibre bundles skinned in 1% Triton X-100 for 2–5 min) by reducing ionic strength in a relaxing solution from 130 mm (HIS) to 35 mm (LIS). Bundle stiffness increased from 6.9 ± 4.9 % to 13.8 ± 6.6 % (n = 12, means \pm S.D.) of rigor stiffness without a rise in axial tension, consistent with the formation of low force cross-bridges.

X-ray diffraction patterns were obtained by exposure to synchrotron radiation (l=0.15 nm, beam dimensions: 0.3×0.2 mm; A2 beamline, DESY, Hamburg). X-ray data were collected on a delay line linear detector or on image plates positioned 2.5 m from the preparation. The most significant effect of LIS was on the ratio of 11 to 10 equatorial intensities (I_{11}/I_{10}), which rose from 0.30 ± 0.30 (n=49) to 0.69 ± 0.56 (n=11). In rigor, I_{11}/I_{10} was 2.80 ± 1.99 (n=16). The LIS rise in I_{11}/I_{10} occurred principally through an increase in I_{11} ; I_{10} remained almost unchanged (Xu *et al.* 1987).

Figure 1. Force (\square) and $I_{\rm M3}$ (\blacksquare) signals during 1 kHz length oscillations in LIS. Bundle length 3.3 mm, diameter 475–575 μ m. LIS composition (mM): EGTA, 1; MgATP, 1; Hepes, 10; creatine phosphate, 10; creatine kinase, 80 U ml⁻¹; Na⁺, 10; K⁺, 10; Mg²⁺, 1; propionate 3. Temperature 6 °C.

In ${\rm Ca^{2^+}}$ -activated fibres, 1 kHz sinusoidal length oscillations produce a sinusoidal change in meridional M3 reflection intensity ($I_{\rm M3}$), maximum intensity ($I_{\rm M3,max}$) occurring at maximum shortening. In rigor, oscillations produce a sinusoidal $I_{\rm M3}$ signal, but with $I_{\rm M3,max}$ at maximum lengthening (Dobbie *et al.* 1998). This shift in $I_{\rm M3,max}$ may indicate a change in S1 lever arm orientation. We imposed oscillations in LIS, and observed an $I_{\rm M3}$ change having the same phase relation to the oscillations as observed in ${\rm Ca^{2^+}}$ -activated fibres (Fig.1). The intensity signal was 5–10 % of $I_{\rm M3,max}$, compared to a value of 20–30 % in ${\rm Ca^{2^+}}$ activation. The lever arm disposition required to account for

these findings is consistent with a pre-power stroke state S1 structure in LIS.

Dobbie I et al. (1998). Nature **396**, 383–387. Xu S et al. (1987). J Muscle Res Cell Motil **8**, 39–54.

This work was supported by IHP-Contract HPRI-CT-1999-00040/2001-00140 of the E.U.

All procedures accord with current UK legislation.