Philip Poole-Wilson 1943–2009

Philip Poole-Wilson was born in London in 1943 and went to school at Marlborough College where he was a very good all-rounder, excelling at games, notably rugby and cricket, and ultimately winning a major scholarship to Trinity College Cambridge to read natural sciences – physics, maths and physiology. Philip enjoyed Cambridge greatly and it was while studying physiology, supervised at times by Alan Hodgkin, that he realised he was more passionately interested in medicine. He modestly remarked ‘I decided a career in pure physiology might be difficult and switched to medicine.’ He graduated from Cambridge and moved to St Thomas’ Hospital Medical School where, in 1967, he qualified in medicine. After several junior posts at the Brompton and Hammersmith Hospitals, Philip returned to St Thomas’ joining the academic department of medicine.

His early research interests at St Thomas’ Hospital were based on ion movements across heart cells and how these influenced contraction. In 1973 he was awarded a British–American Travelling Research Fellowship from the British Heart Foundation (BHF) and he joined the well-known ‘Heart Lab’ at UCLA in California under the chairmanship of Glenn Langer. Here he learnt to measure the movement of K^+, Na^+ and Ca^{2+} in the isolated but arterially perfused interventricular septum of the rabbit – a preparation that could be made truly ischaemic. He studied the effects of acidosis and ischaemia on myocardial function and Ca^{2+} exchange and his early results suggested that developed force and Ca^{2+} exchange were more responsive to acidosis within the cell than to extracellular acidosis – something we are much more aware of today.

He brought these techniques back to the UK and in 1976 was appointed Senior Lecturer at the Cardiothoracic Institute under Peter Harris for whom he had eternal regard. His honorary consultant physician status at the National Heart Hospital allowed him to investigate K^+ loss from hypoxia and ischaemic tissue both in the laboratory and in the catheter lab where he was one of the first to measure K^+ and pH in the coronary effluent of humans using catheter-based ion-sensitive electrodes.

In 1980 he was made Reader and in 1982 given a chair by London University. In 1988 he became the Simon Marks and BHF Professor of Cardiology at the National Heart and Lung Institute, at Imperial College. After serving the European Society of Cardiology (ESC) as a councillor in 1988 and as secretary in 1990, Philip became president from 1994 to 1996 and during that time the ESC underwent significant enlargement and reorganisation. From 2003 to 2005 he was president of the World Heart Federation and since then championed the view that degenerative heart disease in developing countries is as important a health problem as infectious diseases. He received many honours, had an impressive publication list, was chairman or co-chairman of many clinical trials and medical committees but looked upon cardiology as ‘my hobby’. It was an extremely successful hobby.

In October 2008, following his official retirement, he was made Emeritus Professor and Senior Research Investigator. He was still working and had a diary full of lectures and meetings worldwide. On the day he died he was to have lectured to the medical students in the session just before me but sadly did not turn up. He had collapsed on the train to work from a heart attack – the ultimate irony given his specialty. It was a great pity his well-deserved retirement was cut short by about 10–15 years.

Philip had a wonderful mix of skills. He had a schoolboy fascination for the way things worked and constantly wanted to know more; he loved debate and always had intelligent and convincing points of view. He was always fair, taking on board rational arguments and being prepared to acknowledge the opposing view. He had charm and an engaging sense of fun and optimism. On the one hand he would give considered advice but on the other, had a deep regard for his superiors. He had a continuous and fervent desire to encourage and support young scientists and clinicians and a passion for scientific excellence and being informed. At times he was also quite thick skinned and could shrug off seemingly awkward or discourteous
remarks with aplomb. His good nature, dedication to work and boyish enthusiasm influenced us all.

For me there were two parallel but closely related areas that came together and shaped his very productive life. Following his early interest in the movement of K⁺, Na⁺ and Ca²⁺ across cardiac cell membranes and how these altered contraction, he became interested in studying similar processes that lead to the decline of contractile function as the heart started to fail. In parallel, his clinical work with George Sutton at Hillingdon Hospital produced a letter in BMJ that highlighted a concern with the prevalence of heart failure in the community. Philip brought these two parallel strands together – the pathophysiology and the clinical situation – and helped form and then lead a department that worked at the interface of those disciplines. The process led to him becoming an expert in the manifestations of heart failure at the cellular, organ and whole body levels, an expert in designing therapies appropriate for dealing with the symptoms of the disease and an expert in the disease implications for healthcare worldwide.

Philip’s love of science gave rise to many amusing incidents. Here is just one of many anecdotes. I inherited one or two items of equipment from Philip when I joined the department. The results of his fascination for fiddling and tinkering were stored in a locked metal cabinet and with typical gusto and enthusiasm he would open the sacred vault and lend me a small amplifier or gizmo he had made several years previously with rather less focus on electrical safety schemes than would be tolerated today. I have to admit to always being sceptical of their robustness since I nearly electrocuted myself several times on a variety of his home-made devices. He had a habit of earthing the casing (usually a tobacco or biscuit tin) by strategically placing the earth wire stripped of its insulation so that, if the casing was orientated in the way he imagined, it would dangle so as to make contact with any metal surface within the tin. This also meant that, if the item was not orientated exactly as he had envisaged during use, the earth could contact any live wires also strategically placed. I will miss him.

Professor Philip A Poole-Wilson, MA, MD, FRCP, FESC, FACC, FMed Sci, Emeritus Professor of Cardiology, Imperial College, London. Born London 26 April 1943; married 1969 Mary Tattersall (two sons, one daughter); died 4 March 2009.

Ken MacLeod

Alan Williams writes:

Philip and I met in 1976 when (within a couple of months of each other) we joined the Department of Cardiac Medicine of the Cardiothoracic Institute that was based in and around the National Heart Hospital in Marylebone. Philip was a clinical Senior Lecturer and I was fresh from completing my PhD and starting as a post-doc in the group headed by Winifred Nayler. Cardiac Medicine was a small but exciting place to work. Peter Harris, the first professor funded by the BHF, had brought together an unlikely combination of clinical cardiologists, pharmacologists, biochemists and physiologists to investigate the mechanisms underlying cardiac muscle function and how these are altered in disease. My first memory of Philip is of him bounding into the lab (probably singing a snippet of his current favourite aria) and quizzing me on my views on the role of mitochondria in the regulation of cytosolic calcium. This first encounter proved to be typical of our relationship over the next 30-plus years, during which he remained a valued colleague and friend. Philip had enormous enthusiasm and an insatiable desire to understand how things worked. He needed no prompting to enter a debate on any topic ranging from the growing significance of cardiovascular disease in the developing world, to how an ion channel discriminates between calcium and sodium, or the likelihood of Manchester United (his team) winning the Premier League.

Philip will be remembered by many as an outstanding academic clinician and a tireless international ambassador for cardiology. Those of us who worked closely with him in the Cardiothoracic Institute, and its later incarnations, will remember him as a relentlessly cheerful, optimistic (sometimes a bit over optimistic), caring person who thoroughly enjoyed all aspects of his hectic life and displayed an amazing ability to see the good in people. Despite his increasing involvement in multinational clinical trials and the politics of cardiology, he retained his youthful enthusiasm for science and he fought hard to ensure that the contribution made by laboratory science to advances in cardiology should receive appropriate recognition and I will always be grateful to him for that. Philip was the person I turned to when I needed advice on how to
negotiate my way through a difficult administrative issue, whether I should agree to sit on some committee or other, or if I should accept a job offer. I didn’t always take his advice but I usually felt much better about life by the time I left his office.

David Eisner adds:
I first met Phillip in 1983 when he invited me to speak at a meeting he was organizing. From our first meeting I was impressed by his charm, wit and warmth. Our paths crossed many times over the next 25 years and I always went away from these meetings feeling happier with the world. His chuckle could make any ridiculous situation seem not so bad. There was never, however, any doubt as to his intellect. He was always an intelligent questioner and would gently, with a characteristic twinkle in his eye, find the weakest part of one’s presentation. He was one of the most straightforward and honourable people I have interacted with, qualities that served him well in chairing the Cardiovascular Panel in the 2001 Research Assessment Exercise as well as in his many other organizational roles. Although Phillip had a global reputation as a clinical academic (translational before ‘translation’ became a cliché), I always got the strong impression that his real love was for what basic science had to offer. With his passing, physiology has lost a strong advocate.

Stuart Cobbe also adds:
I first met Philip when he was a Clinical Lecturer in the Medical Unit at St Thomas’ Hospital London, and I was the House Physician. I was struck by his enthusiasm and interest in all aspects of medicine, but particularly in cardiology. Later, he helped to advise me when my career thoughts turned towards cardiology, and I was appointed as a Registrar at the National Heart Hospital. Philip had very recently been appointed Clinical Senior Lecturer, and I had the privilege of being his first Clinical Research Fellow. As many before and after will have experienced, I went from the hectic life of a Cardiology Registrar to the initially lonely experience of being a Research Fellow, responsible for building equipment, developing methods and undertaking research. It was a major culture shock to accommodate, and I will always be grateful to Philip for his never failing enthusiasm and optimism at times when I could not get my experiments to work. With a combination of hard work and good fortune, he helped me to an ultimately successful research project and the award of an MD degree. More importantly, he introduced me to the excitement of basic science and its relevance to clinical cardiology, and this formed the basis of my clinical academic career subsequently in Oxford, Heidelberg and Glasgow. As one of his ‘old boys’, he never ceased to be interested in my academic activities, and he provided a constant source of sound advice and encouragement. Having known him for nearly 40 years, his death comes as a great shock.

Air Vice-Marshall Professor John Ernsting, or JE as he was universally known, was an exceptional man and an outstanding human physiologist. His lifelong work on aviation physiology and medicine, the stresses on air crew associated with flying at altitude, and the dangers of decompression led to numerous critical developments of breathing systems and pressure jerkins that had a profound and lasting influence on the design of crew support apparatus worldwide. It also greatly furthered our understanding of the physiology of such extreme environments.

JE was born on 21 April 1928 in Eltham, London, and trained in Physiology and Medicine at Guy’s Hospital Medical School, from whence he qualified in 1952. He was subsequently commissioned into the Medical Branch of the RAF, from which he finally retired in 1992 with the rank of Air Vice-Marshall, having been Commandant of the RAF Institute of Aviation Medicine (IAM) at Farnborough from 1988, and previously deputy director of research. From the late 50s he led teams exploring the physiological consequences of loss of cabin pressure or escape from the recently introduced high altitude aircraft. His work was also applied to the design of commercial aircraft such as Concorde, and had a direct influence on the setting of internationally agreed cabin pressures in modern airliners.

On his retirement from the RAF JE came back to King’s as a visiting Professor, and continued his research and teaching until his death this year. JE had a passion for education and was an inspirational teacher. He was deeply involved in the creation of the RAF Aviation Medicine Training centre, and subsequently the first postgraduate diploma in aviation medicine, which he later arranged to be taught at King’s College London. More recently he developed an MSc in Aviation Medicine, and on his death was working with others.