negotiate my way through a difficult administrative issue, whether I should agree to sit on some committee or other, or if I should accept a job offer. I didn’t always take his advice but I usually felt much better about life by the time I left his office.

David Eisner adds:
I first met Phillip in 1983 when he invited me to speak at a meeting he was organizing. From our first meeting I was impressed by his charm, wit and warmth. Our paths crossed many times over the next 25 years and I always went away from these meetings feeling happier with the world. His chuckle could make any ridiculous situation seem not so bad. There was never, however, any doubt as to his intellect. He was always an intelligent questioner and would gently, with a characteristic twinkle in his eye, find the weakest part of one’s presentation. He was one of the most straightforward and honourable people I have interacted with, qualities that served him well in chairing the Cardiovascular Panel in the 2001 Research Assessment Exercise as well as in his many other organizational roles. Although Phillip had a global reputation as a clinical academic (translational before ‘translation’ became a cliché), I always got the strong impression that his real love was for what basic science had to offer. With his passing, physiology has lost a strong advocate.

Stuart Cobbe also adds:
I first met Philip when he was a Clinical Lecturer in the Medical Unit at St Thomas’ Hospital London, and I was the House Physician. I was struck by his enthusiasm and interest in all aspects of medicine, but particularly in cardiology. Later, he helped to advise me when my career thoughts turned towards cardiology, and I was appointed as a Registrar at the National Heart Hospital. Philip had very recently been appointed Clinical Senior Lecturer, and I had the privilege of being his first Clinical Research Fellow. As many before and after will have experienced, I went from the hectic life of a Cardiology Registrar to the initially lonely experience of being a Research Fellow, responsible for building equipment, developing methods and undertaking research. It was a major culture shock to accommodate, and I will always be grateful to Philip for his never failing enthusiasm and optimism at times when I could not get my experiments to work. With a combination of hard work and good fortune, he helped me to an ultimately successful research project and the award of an MD degree. More importantly, he introduced me to the excitement of basic science and its relevance to clinical cardiology, and this formed the basis of my clinical academic career subsequently in Oxford, Heidelberg and Glasgow. As one of his ‘old boys’, he never ceased to be interested in my academic activities, and he provided a constant source of sound advice and encouragement. Having known him for nearly 40 years, his death comes as a great shock.

John Ernsting
1928–2009

Air Vice-Marshall Professor John Ernsting, or JE as he was universally known, was an exceptional man and an outstanding human physiologist. His lifelong work on aviation physiology and medicine, the stresses on air crew associated with flying at altitude, and the dangers of decompression led to numerous critical developments of breathing systems and pressure jerkins that had a profound and lasting influence on the design of crew support apparatus worldwide. It also greatly furthered our understanding of the physiology of such extreme environments.

JE was born on 21 April 1928 in Eltham, London, and trained in Physiology and Medicine at Guy’s Hospital Medical School, from whence he qualified in 1952. He was subsequently commissioned into the Medical Branch of the RAF, from which he finally retired in 1992 with the rank of Air Vice-Marshall, having been Commandant of the RAF Institute of Aviation Medicine (IAM) at Farnborough from 1988, and previously deputy director of research. From the late 50s he led teams exploring the physiological consequences of loss of cabin pressure or escape from the recently introduced high altitude aircraft. His work was also applied to the design of commercial aircraft such as Concorde, and had a direct influence on the setting of internationally agreed cabin pressures in modern airliners.

On his retirement from the RAF JE came back to King’s as a visiting Professor, and continued his research and teaching until his death this year. JE had a passion for education and was an inspirational teacher. He was deeply involved in the creation of the RAF Aviation Medicine Training centre, and subsequently the first postgraduate diploma in aviation medicine, which he later arranged to be taught at King’s College London. More recently he developed an MSc in Aviation Medicine, and on his death was working with others.
John Coote writes:
John Ernsting’s contribution to human applied physiology has largely gone unrecognized by the present generation of physiologists, yet it was immense.

This might have been because much of his research was applied to improving the safety of humans in supersonic flight and the aviation aspects of hypobaric hypoxia. It should not be forgotten that one of his early studies involved the development of a small chamber sealed around the neck to enable increases and decreases in pressure around the carotid sinuses applied to change the activity of the carotid baroreceptors. This was in the mid 1950s and the method is still used to this day and in most recent years has enabled several key questions regarding heart rate and blood pressure control during exercise to be answered. He was an experimentalist of the first order and loved being in the lab.

Jeremy Ward

in the department of Physiology at King’s to develop an MSc in Space Physiology and Health, the first of its kind in the UK. JE also made invaluable contributions to the teaching of human and applied physiology to both undergraduates and postgraduates, and his enthusiasm and vigour for the subject, unmatched by others a quarter his age, enthused generations of students. He was editor of what is regarded as the key textbook in the field, now known as Ernsting’s Aviation Medicine.

JE was a physiologist of the old school, meticulous and thorough, and did not hesitate to act as his own subject under sometimes dangerous conditions. This included decompression to over 100,000 feet, which on one occasion almost led to his death, and use of what can only be described as a neck tourniquet to investigate how long it took to lose consciousness when cerebral perfusion was impeded. He had a strong work ethic, and even in his last days was often in the department shortly after 7am. He was teaching and examining at King’s a few days before his death.

He was appointed OBE in 1959 and CB in 1992, and was a Queen’s honorary surgeon from 1989 to 1993. He was a past-president of the International Academy of Aviation and Space Medicine, and received the Louis Bauer Award from the Aerospace Medical Association in 2002. Last year a research laboratory in Brazil was named after him. He gave the Halliburton lecture in Physiology at King’s in the spring of 2009.

I was privileged to have him in my department, where he was a constant source of enthusiasm and a mine of information, though it was sometimes difficult to keep up with his boundless energy! His death is a major loss not just to King’s but also to physiology.

Council Elections
The following have been elected by Members to serve on Council for 4 years with effect from the AGM on 8 July 2009
Stephen Bolsover
Rod Dimaline
Julian Dow
Stuart Egginton
Mary Morrell
Michael Shipston
Andrew Trafford
Michael White

The following are the current Trustees of the Benevolent Fund
David Brown (Chair)
Bob Meech
Robert Walker
Thelma Lovick
Rod Dimaline (ex officio)
Clive Orchard (ex officio)

Adjustment to Membership Subscription fees for 2010
The Society is pleased to announce that those Members who choose to pay their annual subscription by Direct Debit will, from 2010, receive a further reduction to their fees. Furthermore, Undergraduate Members will benefit from the introduction of a one-off payment, which will cover their membership fees for the duration of their undergraduate degree.

<table>
<thead>
<tr>
<th>Membership category</th>
<th>Membership fees 2010</th>
<th>With DD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary Member</td>
<td>£90</td>
<td>£70</td>
</tr>
<tr>
<td>Affiliate</td>
<td>£20</td>
<td>£15</td>
</tr>
<tr>
<td>Associate</td>
<td>£45</td>
<td>£35</td>
</tr>
<tr>
<td>School and College Associate</td>
<td>£15</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Associate (join alone)</td>
<td>£15</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Associate (join as group of members)</td>
<td>£10</td>
<td></td>
</tr>
</tbody>
</table>

Ordinary Members of The Society will continue to be eligible to receive a discount on hard-copy subscriptions to The Society’s publications. For 2010, the discount will be 60% of the European retail price, as follows:
The Journal of Physiology: £137
Experimental Physiology: £41

For further information, please contact membership@physoc.org